УДК 681. 625

Л. Ф. ЗІРНЗАК

СИНТЕЗ ПРИВОДА ДРУКАРСЬКОГО ЦИЛІНДРА З НЕКРУГЛИМИ ЗУБЧАСТИМИ СЕКТОРАМИ ПЛОСКОДРУКАРСЬКОЇ МАШИНИ

Некруглі зубчасті сектори застосовуються для привода друкарського циліндра в плоскодрукарській машині ПП-84. Талер одержує рух від електродвигуна через пасову передачу 1, зубчастий

Рис. 1. Кінематична схема привода друкарського апарата плоскодрукарської машини ПП-84 (*a*); діаграми руху талера та друкарського циліндра (б).

2—3 і кривошипно-повзунний механізми O_1AB з зубчастим скатом (рис. 1,*a*). Графіки швидкості v_T та прискорення w_T талера відносно кута повороту головного вала (кривошипа) зображені на рис. 1, б. Під час друкування необхідна синхронізація руху

друкарського циліндра (ДЦ) й талера, яка досягається безпосереднім кінематичним зв'язком між зубчастими рейками 6 талера та вінцями 6' ДЦ (ділянка 2—3 діаграми руху, рис. 1, б). До початку синхронізації руху з талером ДЦ розганяється від постійної швидкості v_{11} до швидкості талера v_{21} (ділянка 1—2) некруглими зубчастими секторами 5, 5'. Тут і далі параметри діаграми руху ДЦ розглядаються в інваріантному (безрозмірному) вигляді [5]. Після закінчення друкування відбувається гальмування циліндра некруглими зубчастими секторами 7, 7' від швидкості v_{31} до постійної v_{11} (ділянка 3—4). На ділянці 4—1 рівномірного руху ДЦ приводиться зубчастими секторами 8, 8'.

Очевидно, що синтез привода ДЦ при встановлених координатах точок 1, 2, 3, 4 діаграми руху, зводиться фактично до синтезу законів руху на ділянках 1-2 і 3-4 та визначення параметрів некруглих зубчастих секторів.

Синтез комбінованого закону руху ДЦ можна здійснити різними методами. Загальними умовами синтезу для всіх є:

шлях будь-якої точки на поверхні ДЦ за період циклу

$$S_{II} = S_{121} + S_{341} + \Phi_1 + v_{11} (2\pi - \varphi_3 + \varphi_2) = n\pi D_{II}; \qquad (1)$$

сума всіх фазових кутів розглянутих ділянок руху

$$\varphi_{12} + \varphi_{34} + \varphi_3 - \varphi_2 + \varphi_{41} = 2\pi, \qquad (2)$$

де S_{12i} і S_{34i} — переміщення поверхні ДЦ відповідно за рахунок приросту швидкості від v_{1i} до v_{2i} і спаду від v_{3i} до v_{1i} , Φ'_1 — переміщення ДЦ за період сумісного руху з талером; φ_2 і φ_3 — кутові координати початку (точка 2) і кінця (точка 3) сумісного руху ДЦ з талером (рис. 1,6); n — кількість обертів циліндра за період циклу; φ_{12} , φ_{34} , φ_{41} — фазові кути відповідно розгону, гальмування та рівномірного руху ДЦ; $D_{\mathbf{u}1} = \frac{D_{\mathbf{u}}}{r_{\mathbf{k}} \cdot t_{\mathbf{ck}}}$ — безрозмірний діаметр ДЦ; $r_{\mathbf{k}}$ — радіус кривошипа; $i_{\mathbf{ck}}$ — передаточне відношення механізму ската; $D_{\mathbf{u}}$ — діаметр ДЦ.

Існуючі методи синтезу таких законів руху не враховують особливостей розрахунку та виготовлення механізмів некруглих зубчастих коліс. Відомі [2—4] методи розрахунку та нарізання некруглих зубчастих коліс, що відтворюють монотонно змінні функції. Незважаючи на це, нарізання та особливо контроль точності виготовлення таких коліс залишаються складним технологічним завданням. Тому актуальним є розв'язання комплексної задачі синтезу руху ДЦ і одночасно некруглих зубчастих секторів привода, які розглядаються як круглі зі зміщеними центрами обертання. Тоді їх можна нарізати і вести контроль точності виготовлення звичайними методами.

Розглянемо метод синтезу цих коліс на ділянці розгону друкарського циліндра. На рис. 2 показано схему планетарно-зубчастого механізму, де колесо-сателіт 2 (число зубців z) від водила $O_A O_B$ здійснює обертання навколо нерухомого центрального колеса 1 (число зубців z_A). На нерухомому колесі та сателіті на відстанях e_1 і e_2 від їх центрів зафіксовані точки C_A і C_B , положення яких визначається кутами β_0 та δ_n або декартовими координатами (відносно центра O_A) X_{CA} , Y_{CA} і X_{CB} , Y.

Застосувавши метод інверсії й умовно прийнявши, що точки O_A і O_B є центрами ведучого та веденого зубчастих секторів, а точки C_A і C_B — відповідно центри обертання колеса 4 і ДЦ (рис. 1,*a*), розглянута схема планетарного механізму ідентична з системою привода циліндра.

Рис. 2. Розрахункова схема привода друкарського циліндра з некруглими зубчастими секторами на ділянці розгону.

При обертанні водила точка C_B описує циклоїдальну криву (епіциклоїду), рівняння якої запишеться:

відносно точки О

$$x_{C'B} = e_2 \cdot \cos \delta_n + O_A O'_B \cdot \cos \beta,$$

$$y_{C'B} = e_2 \cdot \sin \delta_n + O_A O'_B \cdot \sin \beta;$$
(3)

відносно точки СА

$$\begin{array}{l} x_{C'B} - x_{CA} = \left[\varepsilon_2 \cos \delta_{\pi} + (\kappa + 1) \cdot \cos \beta - \varepsilon_1 \cos \beta_0 \right] \cdot R_B, \\ y_{C'B} - y_{CA} = \left[\varepsilon_2 \cdot \sin \delta_n + (\kappa + 1) \sin \beta - \varepsilon_1 \sin \beta_0 \right] \cdot R_B, \end{array}$$

$$(4)$$

де e_1 , e_2 — величини зміщення центрів обертання зубчастих секторів відносно їх власних центрів; $O'_BO_A = O_BO_A = R_A + R_B = (\kappa + 1)R_B$ відстань між центрами секторів; R_A , R_B — радіуси початкових кіл ведучого та веденого секторів; $\kappa = \frac{R_A}{R_B} = \frac{z_A}{z_B}$; B_0 — кут ведучого сектора; β — біжуче значення кута повороту водила O_AO_B ; $\delta_n = \delta_0 + \beta + \kappa \beta$ — біжуче значення кута повороту відрізка прямої $O'_BC'_B$ відносно центра O'_B ; δ_0 — значення кута δ_n при $\beta = 0$; $\varepsilon_1 = \frac{e_1}{R_B}$, $\varepsilon_2 = \frac{e_2}{R_B}$, $(\kappa+1) = \frac{O_A O'_B}{R_B}$ — геометричні параметри.

Біжуче значення міжцентрової відстані С_АС'_В

$$I = V (X_{C'B} - X_{CA})^2 + (Y_{C'B} - Y_{CA})^2.$$
(5)

Кут повороту друкарського циліндра

 $\psi_n - \sigma_n - \delta_n$.

Кут повороту ДЦ, узгоджений з діаграмою руху

$$\varphi_{\mathbf{\mu}} = \psi_n - \psi_0, \tag{6}$$

де σ_n — кут повороту кривошипа; ψ_0 — значення кута ψ_n при $\beta = \beta_0$

$$\sigma_n = \operatorname{arc} \operatorname{tg} \frac{y_{C'B} - y_{CA}}{x_{C'B} - x_{CA}}.$$
(7)

Кут повороту кривошипа, узгоджений з діаграмою руху талера

$$\varphi = \sigma_0 - \sigma_n + \varphi_2, \tag{8}$$

де σ_0 — значення кута σ_n , коли $\beta = 0$; φ_2 — кутова координата точки 2 діаграми руху, яка відповідає початку сумісного руху ДЦ з талером.

У машинах з такою діаграмою руху друкарського апарата натиск може бути періодичним (ПП-84) або епізодичним (ПС-А3). Тому, якщо в процесі синтезу привода не вдається одержати закон зміни міжцентрової відстані I таким, як закон опускання або підйому ДЦ, або збереженням незмінною міжцентрової відстані I = const, проводять кутову корекцію зубчастого зачеплення секторів.

Кутова швидкість ДЦ визначається

$$\omega_{\mathbf{u}} = \frac{d\psi_{\mathbf{u}}}{d\sigma_{\mathbf{u}}} \cdot \frac{d\sigma_{\mathbf{u}}}{dt} = \omega_{\mathbf{u},\mathbf{i}} \cdot \omega_{\mathbf{i}}, \qquad (9)$$

де ω_{ц·i} — інваріант подібності кутової швидкості ДЦ; ω₁ — кутова швидкість кривошипа (головного вала)

$$\omega_{\mathrm{u},\mathrm{i}} = \frac{d\psi_n}{d\sigma_n} \cdot \frac{d(\sigma_n - \delta_n)}{d\sigma_n} - 1 - \frac{d\delta_n}{d\sigma_n}.$$
 (10)

Між σ_n і δ_n існує такни взаємозв'язок (7):

$$\operatorname{tg} \sigma_n = \frac{\varepsilon_2 \sin \delta_n + (\kappa + 1) \sin \beta - \varepsilon_1 \sin \beta_0}{\varepsilon_2 \cos \delta_n + (\kappa + 1) \cos \beta - \varepsilon_1 \cos \beta_0}.$$
 (11)

Похідну $\frac{d \delta_n}{d z_n}$ визначимо з (11), як для функції, що задана у наявному виді. Провівши відповідні підстановки та перетворення, одержимо

$$\omega_{\mathfrak{u},\mathfrak{i}} = 1 - \frac{[\varepsilon_{1}\cos\delta_{n} + (\kappa+1)\cos\beta - \varepsilon_{1}\cos\beta_{0}]^{2} + [\varepsilon_{1}\sin\delta_{n} + \varepsilon_{2}\sin\delta_{n} + \varepsilon_{2}\sin\delta_{n} + \varepsilon_{1}\cos\beta_{0}](\varepsilon_{2}\cos\delta_{n} + \cos\beta) + [\varepsilon_{2}\sin\delta_{n} + \varepsilon_{2}\sin\delta_{n} + \varepsilon_{2}\sin\delta_{n}$$

У зв'язку з тим, що при синтезі закону руху вихідним положенням прийнятий кінець ділянки розгону й обертання ДЦ розглядається у бік, протилежний дійсному напрямку, знак перед кутовою швидкістю треба міняти на протилежний.

Колова швидкість друкарського циліндра

$$\boldsymbol{v}_{\mathbf{n}} = \frac{\boldsymbol{\omega}_{\mathbf{n}} \cdot \boldsymbol{D}_{\mathbf{n}}}{2} = \frac{\boldsymbol{\omega}_{\mathbf{n},\mathbf{i}} \cdot \boldsymbol{\omega}_{\mathbf{i}} \cdot \boldsymbol{D}_{\mathbf{n}}}{2} = \boldsymbol{v}_{\mathbf{n},\mathbf{i}} \cdot \boldsymbol{\omega}_{\mathbf{i}} \cdot \boldsymbol{r}_{\mathbf{k}} \cdot \boldsymbol{i}_{\mathbf{c}\mathbf{k}}, \tag{13}$$

ge $v_{\mathfrak{u},\mathfrak{i}} = \omega_{\mathfrak{u},\mathfrak{i}} = \frac{D_{\mathfrak{u},\mathfrak{i}}}{2}.$

Кутове прискорення ДЦ

$$\mathbf{e}_{\mathbf{u}} - \frac{d\mathbf{\omega}_{\mathbf{u}}}{d\sigma_{n}} \cdot \frac{d\mathbf{z}_{n}}{dt} = \frac{d^{2}\psi_{n}}{d\sigma_{n}^{2}} \left(\frac{d\sigma_{n}}{dt}\right)^{2} = \mathbf{z}_{\mathbf{u},\mathbf{l}} \cdot \mathbf{\omega}_{\mathbf{l}}^{2}, \tag{14}$$

де є_{ці} — інваріант подібності кубового прискорення ДЦ

$$\mathfrak{s}_{\mathfrak{n},\mathfrak{l}} = \frac{d^{2} \frac{1}{\sqrt{n}}}{d\mathfrak{s}_{n}^{2}} = \frac{d \left(1 - \frac{d\mathfrak{s}_{n}}{d\mathfrak{s}_{n}}\right)}{d\mathfrak{s}_{n}} - \frac{d^{2}\mathfrak{s}_{n}}{d\mathfrak{s}_{n}^{2}}.$$

Після нескладних перетворень та підстановок одержуємо

Дотичне прискорення ДЦ

$$w_{\mu} = \varepsilon_{\mu} \frac{D_{\pi}}{2} = \varepsilon_{\mu,i} \frac{D_{\mu,i}}{2} \cdot w_{i} \cdot r_{\kappa} \cdot i_{c\kappa} = w_{\mu,i} w_{i}^{2} \cdot r_{\kappa} \cdot i_{c\kappa}, \qquad (16)$$

де $w_{u,i}$ — інваріант подібності дотичного прискорення ДЦ.

З формул (12), (15) випливає, що кінематика ДЦ не залежить від абсолютних значень параметрів некруглих зубчастих секторів, а тільки від їх відносних всличин ε_1 , ε_2 , κ і кута β_0 .

Для синтезу привода ДЦ з некруглими зубчастими секторами можна використати таку методику. Задані вихідні дані: 1— закон руху талера, хід талера, діаметр циліндра D_{11-i} ; 2— координати початку сумісного руху ДЦ з талером φ_2 , υ_{21} , ϖ_{21} ; 3— величина постійної швидкості ДЦ V_{11} ; 4— фазовий кут розгону φ_{12} ; 5— кут повороту ДЦ за період його розгону $\varphi_{12\mu}$; 6 — міжцентрова відстань $I_{21} = \frac{I_2}{R_B}$ в момент, коли ввімкнений натиск. Невідомі величини ε_1 , ε_2 , κ і β_0 .

Відповідно до умов стикування ділянок комбінованого закону руху [1] повинні бути витримані такі рівності:

у точці 1 діаграми руху, коли $\beta = \beta_0$

$$\boldsymbol{v}_{11} = \boldsymbol{\omega}_{u11} - \frac{D_{u,1}}{2}, \quad \text{звідки} \quad \boldsymbol{\omega}_{u11} = \frac{2\boldsymbol{v}_{,i}}{D_{u,1}}; \quad (17)$$

$$w_{n11} = \varepsilon_{n11} \frac{D_{n,1}}{2} = 0, \text{ to } 1i \ \varepsilon_{n11} = 0, \tag{18}$$

де $\omega_{\pi ii}$ і $\varepsilon_{\pi ii}$ — інваріанти подібності кутових швидкості та прискорения ДЦ на початку його розгону, які визначаються за формулами (12), (15) при $\beta = \beta_0$;

у точці 2 діаграми руху, коли β=0

$$v_{2i} = v_{u2i} = \omega_{u2i} \frac{D_{u,i}}{2}$$
, звідки $\omega_{u2i} = \frac{2\omega_{2i}}{D_{u,i}}$, (19)

$$w_{2i} = w_{\mu 2i} = \varepsilon_{\mu 2i} \frac{D_{\mu,i}}{2}, \text{ тодi } \varepsilon_{\mu 2i} = \frac{2w_{2i}}{D_{\mu,i}},$$
 (20)

дс ω_{n21} і ϵ_{n21} — відповідно інваріанти подібності кутових швидкості та прискорення ДЦ у момент початку синхронізації його руху з талером. Вони визначаються за формулами (12), (15) при підстановці в них $\beta = 0$.

Міжцентрова відстань І₁ при ввімкненому натиску

$$J_{2i} = V \left[\varepsilon_2 \cos \delta_0 + (\kappa + 1) - \varepsilon_1 \cos \beta_0 \right]^2 + (\varepsilon_2 \sin \delta_0 - \varepsilon_1 \sin \beta_0)^2.$$
(21)

Фазовий кут розгону ДЦ визначається

$$\begin{aligned} \varphi_{12} &= |\sigma_0 - \sigma_n| = |\arctan tg \, \frac{\varepsilon_2 \sin \varepsilon_0 - \varepsilon_1 \sin \beta_0}{\varepsilon_2 \cos \delta_0 + (\kappa + 1) - \varepsilon_1 \cos \beta_0} - \\ &- \arctan tg \, \frac{\varepsilon_2 \sin \delta_n + (\kappa + 1) \sin \beta_0 - \varepsilon_1 \sin \beta_0}{\varepsilon_2 \cos \varepsilon_n + (\kappa + 1) \cos \beta_0 - \varepsilon_1 \cos \beta_0} \Big|. \end{aligned}$$

$$(22)$$

Кут повороту ДЦ за період розгону

$$\varphi_{12n} = (\sigma_0 - \delta_0) - (\sigma_n - \delta_n) = (\sigma_0 - \sigma_n) + (\kappa + 1)\beta_0.$$
⁽²³⁾

Фазовий кут розгону φ_{12} може бути також визначений за формулою, яка враховує рівність швидкостей та прискорень у місцях стику ділянки розгону з сусідніми ділянками закону руху ДЦ

$$\varphi_{12} = \frac{\zeta_1(v_{21} - v_{11})}{w_{21}}, \qquad (24)$$

де ξ_1 — коефіцієнт, який є функцією якісних характеристик закону руху на ділянці розгону.

Звідки з врахуванням (22) одержимо

$$\zeta_1 = \frac{\varphi_{12} \cdot w_{2i}}{v_{2i} - v_{1i}} = \frac{|\sigma_0 - \sigma_n| \cdot \varepsilon_{12i}}{|\omega_{12i}| - |\omega_{11i}|}.$$

Толі можна записати таку систему рівнянь:

$$\zeta_{1} = \frac{|\sigma_{0} - \sigma_{n}| \cdot \varepsilon_{n2i}}{|\omega_{n,i}| - |\omega_{n1i}|}, \quad O = \varepsilon_{n1i}; \quad \varphi_{12n} = (\sigma_{0} - \sigma_{n}) + (\kappa + 1)\beta_{0}; \quad (25)$$
$$I_{2i} = \sqrt{|\varepsilon_{2}\cos\delta_{0} + (\kappa + 1) - \varepsilon_{1}\cos\beta_{0}|^{2} + (\varepsilon_{2}\sin\delta_{0} - \varepsilon_{3}\sin\beta_{0})^{2}}.$$

У цій системі ліві частини рівнянь віломі (залані) величини, а праві є функціями ε_1 , ε_2 , κ і β_0 .

Таким чином, одержано систему чотирьох трансцендентних рівнянь з чотирма невідомими, яку можна розв'язати одним із метолів обчислювальної математики з використанням ЕОМ. Тоді, задаючись з конструктивних умов величиною R_B, знайдемо параметри некруглих зубчастих секторів e_1, e_2, R_4 і β_0 , а отже, і швидкість та прискорення ДЦ на цій ділянці руху.

На ділянці гальмування ДЦ застосовуємо ті ж методи синтезу, що й на ділянці розгону.

Розроблена методика дає змогу проводити цілеспрямований синтез комбінованого закону руху ДЦ і некруглих зубчастих секторів, які фактично є круглими зі зміщеними центрами обертання. Використання безрозмірних методів синтезу дає можливість широкого параметричного лослілження законів руху ДЦ та некруглих зубчастих секторів.

ЛІТЕРАТУРА

Зірнзак Л. Ф. Синтез закону руху друкарського циліндра плоскодру-карської машини з нерівномірною швидкістю друкування за наперед заданими параметрами.— «Поліграфія та видавнича справа». 1975, № 11.
 Литвин Ф. Л. Некруглые зубчатые колеса. М.—Л., Машгиз, 1956.
 Литвин Ф. Л., Яблонский Н. С. О проектировании и нарезаними импортитисти и портитисти и параметра и портитисти. 1057.

зубьев многовитковых некруглых колес.— «Приборостроение», 1957, № 6. 4. Литвин Ф. Л. [и др.]. Зуборезные станки для нарезания некруглых

колес. Л., 1964. 5. Тир К. В. Механика полиграфических автоматов. М., «Книга», 1965.

L. F. ZIRNZAK

THE SYNTHESIS OF THE DRIVE OF THE PRINTING CYLINDER WITH NON-ROUND TOOTH SECTIONS OF THE FLAT-BED MACHINE

Summary

The article deals with the methods of solution of the complex problem of the Synthesis of the combined law of the motion of the flat-bed machine printing cylinder and the parameters definition of non-round tooth section of its drive which are round with displaced rotation centres.