УДК 655.226

П.Л.Пашуля, Б.І.Листвак, І.М.Павлюк

ПРИРОДА ПОВЕРХНІ І СТРУКТУРА ЦИНКОВИХ ПОКРИТТІВ ОФСЕТНИХ ПЛАСТИН

Раніше [6] нами встановлено зв'язок текстури мікроцинкових пластин із захистом друкуючих елементів, де йдеться про тектуру катаних пластин. Відомі також текстури, що виникають при електрокристалізації металів [2].

На підставі [7] нами зроблено спробу керувати природою поверхні формних пластин. Проте знайдено лише одну працю, де встановлюється аналітична залежність корозійної стійкості електролітичних цинкових покриттів від кількісних характеристик текстури [1].

Ми проводили цинкування в статичних умовах при 25±0,5°С стальних пластин марки 08 КП в електроліті: сульфату цинку 90 г/л, хлористого амонію 190 г/л, борної кислоти 23 г/л. Густина струму на катоді змінювалась від 0,5 до 6 А. дм⁻². Час нарощування цинку -різний. Вивчався також вплив домішки ДХТІ=102А на структуру покриття^{*}. Гідрофільність поверхні покриття визначалась за методикою і на установці [5]. Орієнтація кристалітів визначалась на ДРОН=05.

За даними [1], у наведеному вище елсктроліті з домішкою ДХТІ=102А при нарощуванні на мідну підкладку текстура осадів описується такими ідеальними орієнтаціями: (11.0) [hkl], (10.3) [hkl] і (10.0) [hkl], тотбто утворюється аксіальна текстура (11.0) [hkl].

При деяких режимах осадження в покритті виникають дуже слабкі переважаючі орієнтації кристалітів (10.3) [hkl].

Наші покриття (табл. 1)** в електроліті без домішки мають переважаючу текстуру по площині (0002) і дещо меншу -по пло-

^{*} Пластини ЛМЗ цинкуються в сульфатному електролігі в динамічних умовах із свинцевим анодом без органічних домішок.

^{**} R (hkl), % - ступінь текстури; α, град. - кут розкиду текстури.

Таблиця I.

№ 3pa3-	R (hik) , %								Параметри кри- сталічної гратки		h,	Dk,
ка	(0002) [14]	(10T0) [11]	(10T1) [56,5]	(10T2) [8]	(10T3) [8]	(10T4) [4]	(10 2 0) [10]		a.A {2, 664}	c,A {4, 946}	мкм	А/дм ²
1	55,5*	4	21	7,1	-	-	12	3	2,679	4,947	1,3	1,0
2	31,6*	2	26,5	16*	-	-	23,5*	3,4	2,680	4,948	4,0	1,0
3	34*	2	21,7	12	-		30,3*	3,3	2,679	4,948	6,5	1,0
4	2,5	41*	32	2,5	- 1	-	22*	-	-		6,2	1,0
5	2,5	36*	43	4	-		14,5	-	-	-	3,7	1,5
6	1	40,4*	43	2,4	-		14,2	-	-	-	4,3	2,0
7	8	39*	43	4,0	-	-	6	-	- 1	-	5,4	6,0
8	32*	2	27	15			24*	3,3	2,682	4,953	4,0	1,0
9	7	40*	40	2,5		-	11,5	4,2	2,665	4,947	4,0	1,0
10	8	3	25	15*	16*	2	29*	-	-	-	3,4	-
11	13	22,1*	64,1*	-	-	-	-	-	-	-	_	-
12	17	9	36*	7	11*	3	6	4	2,664	4,948	<u> </u>	-

Кристалографічні характеристики цинкових покриттів.

Примітки: [] - теоретичні значення текстури (тільки для покриттів), {} - стандартні параметри кристалічної гратки, * - текстура. У зразка 10 є рефлекс по площині (2021); у зразка 12 - по площинах (1122) і (2021). Для зразків 1, 2, 3, 8 - електроліт без домішки; для 4 ... 7, 9 - домішка ДХТІ́-102А 100 мл/л, цинковий електрод; для 8, 9 - мікроцинковий електрод. Зразок 10 - пластина Ц-2; 12 - пластина ЦМП. щині (1120). Ступінь структури залежить від товщини покриття. При товщині порядку 1 мкм - найбільша ступінь текстури, на що, мабуть, впливає стальна підкладка, при 4 мкм (зразок 2) ступінь текстури помітно нижчий (послаблений вплив основи), а потім (зразок 3) знову зростає. При цьому параметр кристалічної гратки відрізняється від стандартного значення, що, можливо, також пов'язано з впливом основи.

При однакових режимах, але з домішкою ДХТІ=102А, змінюється одна з осей текстури:^{*} максимум при (10⁻10) і (11⁻20) (зразки 4 ... 7, 9). Крім того осади більш гладкі і гомогенні.

З мікроцинковим електродом (зразок 8) при однаковій товщині осаду текстура така ж, як і зразка 2. При цьому від стандартних значень відрізняються обидва параметри кристалічної гратки.

Покриття на пластинах ЛМЗ має переважаючу текстуру по площині (11720) і слабеньку - по площинах (1073) і (1072).

У катаних пластинах Ц-2 максимум текстури припадає на (10 $\ensuremath{\neg}1$) (визначались лише перші три лінії ГПУ структури), а у мікроцинкових пластинах ЦМП є порівняно слабкий максимум по площині (10 $\ensuremath{\neg}1$) (теоретичний R=33%) і дещо сильніший -по площині (10 $\ensuremath{\neg}1$ 3) (теоритичний R=8%).

З експериментальних даних видно, що текстура (в межах практичних товщин покриттів) у першу чергу залежить від складу електроліту, органічної домішки і певною мірою від густини струму. Так, в електроліті з домішкою (зразки 5 ... 7) зі зростанням густини струму в чотири рази щезає слабенька тектура по площині (11²0) і дещо зростає - по інших площинах. Вплив ДХТІ=102А на текстуру, можливо, пов'язаний з утворенням комплексів іонів цинку з саліциловим альдегідом (складовий компонент) [3].

Гідофільність електролітичних осадів (табл. 2) залежить від текстури. Найбільш гідрофільні пластини ЛМЗ, до них наближається зразок 2 і, особливо, зразок 14 після гідрофілізації. Взагалі ж, на підставі вимірів у вибіркових умовах, всі покриття гідрофобні і тільки після гідрофілізації вони стають більш гідрофільними. Від текстури залежить також здатність до гідрофілізації. Заміна стандартного електроду суттєво не впливає на гідрофільність. В електролітах з ДТХІ-102А найчастіше можна одержати гідрофобні покриття. Дещо специфічний вплив густини струму (зразки 13, 14).

На гідрофілізованих поверхнях в гістерезисних умовах крапля води повністю розтікається, так само крапля зволожуючого розчину - у вибіркових умовах.

[•] Для ДХТ İ-102А раніше не описано

Таблиця 2.

Nº			З обробкою**						
зраз-	Гісте	резисні у	мови	Виб	іркові ум	юви	Вибіркові умови		
ка	θπ	Θκ	Δ Θ	Өп	Θκ	Δ O	Өп	Өк	Δ 0
10***	52	43	8	96	87	9	47	40	7
1	91	84	7	129	119	10	82	69	13
2	-	-	- \	96	91	5	81	76	5
3	90	82	8	-		-	88	85	3
4	59	53	6	-	-	-	118	108	10
13	-	-	-	-	-	-	91	78	13
5	63	55	8	159	141	18	113	108	10
5a	-	-	-	161	158	3	89	79	10
14	-	-	-	147	109	38	59	52	7
6	59	53	6	159	144	15	112	108	4
7	89	81	8	167	161	6	110	104	6
8	93	86	7	162	151	11	121	110	11
9	-	-		166	161	5	95	89	6

Граничні кути змочування і розтікання води на цинкових покрыттях

Примітки: * - після експонування і проявлення; ** - після сенсибілізації і гідрофілізації; *** - нумерація в основному відповідає табл. 1; Θn - граничний кут через 30 с, Θk - через 600 с. Для зразка 13: Dk=0,5 A. · дм⁻², електроліт з домішкою, товщина осаду (h) 2,9 мкм; для зразка 5а: Dk=1,5 A. · дм⁻², з домішкою, розмішування електроліту, h=3,7 мкм; для зразка 14: Dk=4 A. · дм⁻², з домішкою, h=3,9 мкм

Не виключена можливість отримати більш гідрофільні покриття в електролітах іншого складу з відповідними органічними домішками, наприклад, в [4].

1. Исследование фазового состава, текстуры и микроструктуры электролитических цинковых покрытий и паяных соединений оловянистыми прилоями // Отчет о НИР. № Гос. регистр. 0186.0053878. - Днепропетровск, 1987. 2. Кочсргин С.М., Леонтьев А.В. Образование текстур при электрокристализации металлов. М., 1974. З. Лошкарев М.А., Данилов Ф.И., Нестеренко А.Ф. и др. Индивидуальная и совмесная адсорбция компонентов блескообразующей композиции ДХТИ-102А для электролитов цинкования // Электрохимия. 1980. Т. 16. Вып. 7. С. 1008-10127. 4. Надирова Е., Наумов., Семина Е. и др. Противокоррозионное цинкование монометаллических офсетных пластин // Полиграфия. 1986. № 7. С. 21-28. 5. Пашуля П.Л. Изучение сущности защиты печатающих элементов при эмульсионном травлении // Сб. тр. УНИИПП. 1963. Вып. 7. С. 3-24. 6. Пашуля П.Л., Исмаилов О.И. Роль структуры металла при направленном травлении печатной формы // Физико-химические явления в процессах полиграфии. 1987. Т. 37. Вып. 1. С. 57-65. 7. Пашуля П.Л., Листвак Б.И., Павлюк И.М. Связь физико-химической природы формных материалов со структурой металла // Тез. докл. 34-й научн.-техн. конф. МПИ. Ч. 1. М. 1990. С. 65-66.

Стаття надійшла до редколегії 15.01.93.