Complex evaluation of energy-power parameters of chain conveyor drive in perfect binding machine

Author(s) Collection number Pages Download abstract Download full text
Knysh O. B. № 1 (77) 11-19 Image Image

The article establishes the actuality of the research of energy-power parameters of book block processing by tools without an individual drive. An experimental test bench has been designed with purpose to perform the research of conveyor drive of perfect binding machine upon a condition of use the cylindrical milling cutter without an electromechanical drive. The experimental test bench has been mounted on perfect binding machine Trendbinder (Muller-Martini, Switzerland). Such an approach gives grounds to assert the maximum approach of experiment conditions to production. The article shows the character of torques change depending on tractive effort. The author has discovered that the increase of book block transportation velocity causes the dynamic improvement of chain conveyor vibrations. The study analyses the reasons of onset of vibrations in conveyor chain of perfect binding machine and substantiates their decrease with chain velocity increasing. The article shows that maximum torque values on drive sprocket increase with velocity increase of book block transportation. Analytical dependencies of work computation needed for blocks spine processing by cylindrical milling cutter have been achieved by the approximation of experimental curves. The reliability coefficient of experimental curves approximation by trend line is k=0.92–0.97 gives reasons to assert reliability of results got by analytical processing of trend line by polynomial of the six degree. The study evaluates polynomial coefficients for the studied book blocks. The author evaluates dependencies for power calculations of conveyor drive upon a condition of book blocks spine processing by the cylindrical milling cutter without an individual drive. The article analyses the impact of blocks transportation velocity and paper type on conveyor drive power. The study shows that use of the cylindrical milling cutter without an individual drive for book blocks processing reduces the process energy consumption by 1.5–2.2 kW compared to traditional technology.

Keywords: book block, tractive effort, power, drive, chain conveyor, velocity.

doi: 10.32403/0554-4866-2019-1-77-11-19


  • 1. Poliudov, O. M., & Knysh, O. B. (2014). Suchasni tendentsii udoskonalennia zasobiv ta pryst­roiv obrobky korintsia knyzhkovoho bloka pry nezshyvnomu kleiovomu skriplenni: Naukovi zapysky [Ukrainskoi akademii drukarstva], 3 (48), 63–68 (in Ukrainian).
  • 2. Udovytskyi, O., & Soltys, I. (2017). Doslidzhennia dynamichnykh protsesiv pid chas trans­por­tuvannia lantsiuhovym transporterom: Naukovyi visnyk NLTU Ukrainy, 27 (4), 144–147. Retrieved from https://doi.org/10.15421/40270432 (data zvernennia 14.05.2019) (in Uk­rainian).
  • 3. Pilipenko, O., & Poluyan, A. (2015). Dynamics of three mass chain drive in metal and polymeric implementation. International scientific and practical conference world Science Proceedings of the conference Innovative technologies in science. 2015. Vol. I. Rost Publishing (february 21-22). Dubai. Retrieved from http://archive.ws-conference.com/dynamics-of-three-mass-chain-drive-in-metal-and-polymeric-implementation (дата звернення 15.05.2019) (in English).
  • 4. Kozar, V. D. (2014). Metodyka eksperymentalnykh doslidzhen obrizuvannia knyzhkovo-zhurnalnykh blokiv ploskymy rizalnymy instrumentamy z kryvoliniinym profilem kraiky leza: Polihrafiia i vydavnycha sprava, 4 (68), 26–31 (in Ukrainian).
  • 5. Fuglede, Niels, & Thomsen, Jon Juel. (2016). Kinematic and dynamic modeling and ap­proximate analysis of a roller chain drive. Journal of Sound and Vibration. Vol. 366, 447–470. Retrieved from https://doi.org/10.1016/j.jsv.2015.12.028 (дата звернення 12.05.2019) (in English).
  • 6. Fuglede, Niels, & Thomsen, Jon Juel. (2016). Kinematics of roller chain drives – Exact and approximate analysis. Mechanism and Machine Theory. Vol. 100, 17–32. Retrieved from https://doi.org/10.1016/j.mechmachtheory.2016.01.009 (дата звернення 12.05.2019) (in Eng­lish).
  • 7. Huo, Junzhou, Yu, Shiqiang, Yang, Jing, & Li, Tao. (2013). Static and Dynamic Characteristics of the Chain Drive System of a Heavy Duty Apron Feeder. The Open Mechanical Engineering Journal. Vol. 7, 121–128. Retrieved from https://benthamopen.com/contents/pdf/TOMEJ/TOMEJ-7-121.pdf (дата звернення 16.05.2019) (in English).
  • 8. Kuleshov, M. V., & Syromiatnikov, V. S. (2017). Optimizatciia parametrov privoda konveiera pri sluchainom izmenenii nagruzki. Izvestiia vysshikh uchebnykh zavedenii: Mashinostroenie, 10 (691), 69–76. Retrieved from http://izvuzmash.ru/catal…nes/hidden/1478.html (data zver­nennia 15. 09. 2019) (in Russian).
  • 9. Hevko, B. M., Liashuk, O. L., Komar, R. V., Dynia, V. I., & Oleksyshyn, O. V. (2011). Osob­lyvosti rozrakhunku pryvidnykh lanok lantsiuhovoho konveiera: Mizhvuzivskyi zbirnyk «Nau­kovi notatky», 31, 71–74 (in Ukrainian).
  • 10. Topolnytskyi, P. V. (2009). Obrizuvannia knyzhkovykh blokiv pid chas transportuvannia. Systemy transportuvannia. Lviv : UAD (in Ukrainian).
  • 11. Knysh, O. B. (2009). Rozrakhunok potuzhnosti pryvoda mekhanizmu nozha pry obrobtsi korintsia dyskretno-dotychnym sposobom: Naukovi zapysky [Ukrainskoi akademii dru­karst­va], 5, 77–80 (in Ukrainian).