Research of the advanced vacuum forming technological process for applying relief dot images using pvc films

Author(s) Collection number Pages Download abstract Download full text
Maik V. Z., Кусьмерчик Я., Dudok T. H. № 1 (85) 134-144 Image Image

It is very important for a visually impaired person to be socialized into society, as a person receives 80-90% of information about the surrounding world with the help of vision. The development and improvement of technologies for the production of educational and methodical materials for people with vision problems is especially important, which makes it possible to ensure equal opportunities in education and development, and also contributes to their social integration. One of the most promising technologies for the production of educational and methodological editions for people with vision problems is vacuum forming technology. The main feature of the vacuum forming technology is that the products are formed from film polymer material blanks under the influence of pressure and temperature. Under the action of applied forces and temperature, the films are formed into products and cooled. The main material for the production of educational and methodological editions and handouts in vacuum forming technology is a polymer film. Educational and methodical editions are made of light polymer materials that allow one to get relief of different levels. The polymer material of the editions allows one to create a clear outline, convey the characteristic features and details of the image. Textbooks made using polymer films are light and durable. The improved vacuum forming technological process with the use of cardboard matrices for applying the Braille font is studied. A study of the quality of applying relief dot and line images of different sizes by vacuum forming technology using different types of PVC films is conducted. The dependency of stroke height on the width of strokes on the plate, the dependency of the height of Braille elements on the diameter of the holes on the plate, graphic distortions in the plate–print system for strokes and Braille elements are studied.

Keywords: vacuum forming technology, Braille font, relief dot images, cardboard matrix, PVC films, height of elements, width of elements, graphic distortions.

doi: 10.32403/0554-4866-2023-1-85-134-144


  • 1. Jiménez, J. et al. (2009). Biography of louis braille and invention of the braille alphabet: Survey of ophthalmology, 54, 1, 142–149 (in English).
  • 2. Mayik, V. Z., Dudok, T. H., Opotiak, Yu. V., & Tymoshyk, M. A. (2011). Analiz navchalno-metodychnykh tekhnolohii, zasobiv ta prystroiv dlia inkliuzyvnoi osvity: Kvalilohiia knyhy, 1 (19), 118–147 (in Ukrainian).
  • 3. Synova, Ye. P. (2003). Reliefno-krapkove pysmo slipykh. Shryft Lui Brailia. Rozdil 1 (in Ukrainian).
  • 4. Burchak, O. K. (2005). Osvita slipykh: yii suchasne ta maibutnie: Sotsialne partnerstvo, 10, 26–27 (in Ukrainian).
  • 5. Maik, V. Z., Durniak, B. V., Holob, H., Bratsko, C., & Dudok, T. H. (2013). Problemy standartyzatsii shryftu Brailia pry vyhotovlenni vydan dlia nezriachykh: Polihrafiia i vydavnycha sprava, 3–4 (63–64), 68–77 (in Ukrainian).
  • 6. Pryimenko, O. A., & Khmiliarchuk, O. I. (2013). Kompleksnyi pokaznyk yakosti pakovan ta reklamnoi produktsii, shcho vyhotovleni vakuumnym formuvanniam: Tekhnolohiia i tekhnika drukarstva, 1 (in Ukrainian).
  • 7. Suberliak, O. V., & Bashtannyk, P. I. (1995). Tekhnolohiia vyrobnytstva vyrobiv iz plastmas i kompozytiv. Chastyna 1. Kyiv : ISDO (in Ukrainian).
  • 8. Suberliak, O. V., & Bashtannyk, P. I. (1996). Tekhnolohiia formuvannia vyrobiv z plastmas. Chastyna 2. Tekhnolohiia formuvannia pohonazhnykh vyrobiv. Kyiv : ISDO (in Ukrai­nian).
  • 9. Suberliak, O. V., & Bashtannyk, P. I. (2006). Tekhnolohiia pererobky polimernykh ta kompozytsiinykh materialiv. Kyiv (in Ukrainian).
  • 10. Fabuliak, F. H., Ivanov, S. V., & Maslennikova, L. D. (2006). Polimerne materialoznavstvo. Kyiv : Knyzhk. vyd-vo Nats. aviats. un-tu (in Ukrainian).
  • 11. Schwarzmann, P. (2019). Thermoforming: a practical guide. Carl Hanser Verlag GmbH Co KG. (in Ukrainian).
  • 12. Gómez, C., Tobalina-Baldeon, D., & Cavas, F. et al. (2022). Geometrical optimization of thermoforming continuous fibers reinforced thermoplastics with finite element models: a case study: Composites part B: Engineering, 239 DOI: https://doi.org/10.1016/j.com­po­sitesb.2022.109950 (in English).
  • 13. Van de Velde, K., & Kiekens, P. (2001). Thermoplastic polymers: overview of several properties and their consequences in flax fibre reinforced composites: Polym Test, 20 (8), 885–893 (in English).
  • 14. W. Klein, P. (2009). Fundamentals of Plastics Thermoforming 2009 «Springer Cham», Morgan & Claypool Publishers (in English).
  • 15. Mikulonok, I. O. (2020). Tekhnolohichni osnovy pereroblennia polimernykh materialiv / 2-he vyd., pererob. ta dopov. Kyiv : KPI im. Ihoria Sikorskoho (in Ukrainian).
  • 16. Mikulonok, I. O. (2009). Obladnannia i protsesy pereroblennia termoplastychnykh materialiv z vykorystanniam vtorynnoi syrovyny : monohrafiia. Kyiv : IVTs Vydavnytstvo «Politekhnika» (in Ukrainian).
  • 17. Mikulonok, I. O. (2017). Tekhnolohichni osnovy pereroblennia polimernykh materialiv. Kyiv : KPI im. Ihoria Sikorskoho, Vyd-vo «Politekhnika» (in Ukrainian).
  • 18. Radchenko, L. B. (1999). Pererobka termoplastiv metodom ekstruzii : monohrafiia. Kyiv : IZMN (in Ukrainian).