Trends in modern printing production aimed to increase the barrier and strength characteristics of printing materials lead to an ever wider use of multi-layer materials (composites). Each layer in these composites is created from a material with qualitatively different properties and has its purpose. Many of them are exposed to heat treatment (heating, drying) at various production and operations phases. The main obstacle for the intensive heat treatment of materials is significant changes (gradients) of temperature and moisture that result in printing materials’ tension and deformation. Therefore, the work presents graphs of the conductive temperature for two- and three-layer plane-parallel composite printing materials, on which the emerging temperature gradients are observed and their significance is studied in this process.
In this paper, an approach is suggested to the study of heat treatment processes (heating, drying) of certain printing materials based on the theory of non-stationary thermal conductivity by O. V. Lykov. Two- and three-layer plates (composites) are considered for the conductive (contact) heating method. There are polyurethane-cardboard, polypropylene-cardboard, polyethylene-cardboard, polyethylene-glue-cardboard, cardboard-glue-cotton, and cardboard-glue-linen. The materials of the layers of some of the proposed composites are selected in such a way that the temperature gradients in them do not differ much. It will allow these composites to withstand temperature changes during manufacture and operation better, therefore their useful life will increase. The results of the calculations can be recommended to enterprises of both printing and other production industries where heat treatment of materials is used. Due to this, it is possible to optimize technological processes and ensure the necessary quality indicators of products.
Keywords: heat treatment; printing industry; conduction heating; transient heat conduction; mathematical model; thermophysical properties; temperature gradients; composites.
doi: 10.32403/0554-4866-2022-2-84-109-122
- Sass, T. S. (2015). Informatsiini tekhnolohii udoskonalennia protsesiv sushinnia polihrafichnykh materialiv : dys. ... kand.. tekhn.. nauk: 05.13.06. Lviv (in Ukrainian).
- Koliano, Ya. Yu., & Sass, T. S. (2016). Doslidzhennia povedinky perekhidnykh poliv temperatury i potentsialu volohoperenesennia v protsesi konduktyvnoho sushinnia kartonu: Polihrafiia i vydavnycha sprava, 2 (72), 136–155 (in Ukrainian).
- Vankevych, P. I., Chernenko, A. D., Ivanyk, Ye. H., & Koliano, Ya. Yu. (2021). Rozvytok metodiv rozrakhunku kinetychnykh parametriv z metoiu udoskonalennia tekhnolohichnykh protsesiv stvorennia tekhnichnoho tekstyliu ta materialiv dlia formuvannia komplektiv boiovoho ekipiruvannia. Spilni dii viiskovykh formuvan i pravookhoronnykh orhaniv derzhavy : zb. tez dopovidei III Mizhnarodnoi naukovo-praktychnoi konferentsii (Odesa, 22 zhovtnia 2021 r.). Odesa : Viiskova akademiia, 16–17 (in Ukrainian).
- Koljano, Ju. M. (1992). Metody teploprovodnosti i termouprugosti neodnorodnogo tela. Kyiv : Naukova dumka (in Russian).
- Koljano, Ja. Ju., Sass, T. S., & Ivanik, E. G. (2018). Modelirovanie konduktivnoj sushki poligraficheskih materialov kapilljarno-poristoj kolloidnoj struktury: Inzhenerno-fizicheskij zhurnal, 91, 5, 1231–1241 (in Russian).
- Koliano, Ya. Yu., & Sass, T. S. (2009). Nestatsionarna zadacha teploprovidnosti dlia dvosharovoi plyty shchodo sushinnia polihrafichnoi produktsii: Komp’iuterni tekhnolohii drukarstva, 21, 226–234 (in Ukrainian).
- Koliano, Ya. Iu., Strepko, I. T., Svyryd, O. R., Babych, O. Ye., & Melnyk, K. I. (2019). Modeliuvannia teplovoi obrobky odno- ta kilkasharovykh materialiv u polihrafichnykh protsesakh: Komp’iuterni tekhnolohii drukarstva, 1 (41), 102–115 (in Ukrainian).
- Koliano, Ya. Yu., Strepko, I. T., Marchuk (Svyryd), O. R., & Melnyk, K. I. (2020). Doslidzhennia protsesu nestatsionarnoho konvektyvnoho nahrivannia odnosharovykh polihrafichnykh materialiv: Komp’iuterni tekhnolohii drukarstva, 1 (43), 97–115 (in Ukrainian).
- Koliano, Ya. Yu., Senkivskyi, V. M., Marchuk (Svyryd), O. R., & Melnyk, K. I. (2020). Chyselne porivniannia nestatsionarnoho konvektyvnoho i konduktyvnoho nahrivannia odnosharovykh polihrafichnykh materialiv: Polihrafiia ta vydavnycha sprava, 2 (80), 81–99 (in Ukrainian).
- Pikh, I. V., Durniak, B. V., Senkivskyi, V. M., & Holubnyk, T. S. (2017). Informatsiini tekhnolohii formuvannia yakosti knyzhkovykh vydan. Lviv : UAD (in Ukrainian).
- Sholota, K. V. (1998). Intensyfikatsiia protsesu sushinnia kompozytnykh derevynnykh materialiv : avtoref. dys. kand. tekhn. nauk. Lviv : Ukrainskyi derzhavnyi lisotekhnichnyi universytet (in Ukrainian).
- Shot, R. I., & Strepko, I. T. (1998). Teplovi protsesy v polihrafii. Lviv : UAD «Feniks» (in Ukrainian).
- Havenko, S. F., & Martyniuk, M. S. (2008). Tekhnolohiia laminuvannia drukarskykh vidbytkiv. Lviv : UAD (in Ukrainian).
- Melnyk, K. I. (2021). Matematychne modeliuvannia teplovoi obrobky dvo- i bilshesharovykh polihrafichnykh materialiv. Lviv : UAD (in Ukrainian).
- Havenko, S. F., & Yordan, H. M. (2012). Tekhnolohiia mikrokhvylovoho vysushuvannia knyzhkovykh blokiv. Lviv : UAD (in Ukrainian).
- Handbook of Industrial Drying. Fourth Edition. Boca Raton (USA), 2015 (in English).