Researching of conductive heating of two- and three-layer printing materials

Author(s) Collection number Pages Download abstract Download full text
Koliano Ya. Yu., Senkivskyi V. M., Мельник К. І., Ключ М. М. № 2 (84) 111-124 Image Image

Trends in modern printing production aimed to increase the barrier and strength characteristics of printing materials lead to an ever wider use of multi-layer materials (composites). Each layer in these composites is created from a material with qualitatively different properties and has its purpose. Many of them are exposed to heat treatment (heating, drying) at various production and operations phases. The main obstacle for the intensive heat treatment of materials is significant changes (gradients) of temperature and moisture that result in printing materials’ tension and deformation. Therefore, the work presents graphs of the conductive temperature for two- and three-layer plane-parallel composite printing materials, on which the emerging temperature gradients are observed and their significance is studied in this process.

In this paper, an approach is suggested to the study of heat treatment processes (heating, drying) of certain printing materials based on the theory of non-stationary ther­mal conductivity by O. V. Lykov. Two- and three-layer plates (composites) are considered for the conductive (contact) heating method. There are polyurethane-cardboard, polyp­ropylene-cardboard, polyethylene-cardboard, polyethylene-glue-cardboard, cardboard-glue-cotton, and cardboard-glue-linen. The materials of the layers of some of the pro­posed composites are selected in such a way that the temperature gradients in them do not differ much. It will allow these composites to withstand temperature changes during manufacture and operation better, therefore their useful life will increase. The results of the calculations can be recommended to enterprises of both printing and other production industries where heat treatment of materials is used. Due to this, it is possible to optimize technological processes and ensure the necessary quality indicators of products.

Keywords: heat treatment; printing industry; conduction heating; transient heat conduction; mathematical model; thermophysical properties; temperature gradients; composites.

doi: 10.32403/0554-4866-2022-2-84-109-122


  • Sass, T. S. (2015). Informatsiini tekhnolohii udoskonalennia protsesiv sushinnia polih­rafich­nykh materialiv : dys. ... kand.. tekhn.. nauk: 05.13.06. Lviv (in Ukrainian).
  • Koliano, Ya. Yu., & Sass, T. S. (2016). Doslidzhennia povedinky perekhidnykh poliv tem­pe­ra­tury i potentsialu volohoperenesennia v protsesi konduktyvnoho sushinnia kartonu: Polih­rafiia i vydavnycha sprava, 2 (72), 136–155 (in Ukrainian).
  • Vankevych, P. I., Chernenko, A. D., Ivanyk, Ye. H., & Koliano, Ya. Yu. (2021). Rozvytok me­todiv rozrakhunku kinetychnykh parametriv z metoiu udoskonalennia tekhnolohichnykh pro­tsesiv stvorennia tekhnichnoho tekstyliu ta materialiv dlia formuvannia komplektiv boiovoho ekipiruvannia. Spilni dii viiskovykh formuvan i pravookhoronnykh orhaniv derzhavy : zb. tez dopovidei III Mizhnarodnoi naukovo-praktychnoi konferentsii (Odesa, 22 zhovtnia 2021 r.). Odesa : Viiskova akademiia, 16–17 (in Ukrainian).
  • Koljano, Ju. M. (1992). Metody teploprovodnosti i termouprugosti neodnorodnogo tela. Kyiv : Naukova dumka (in Russian).
  • Koljano, Ja. Ju., Sass, T. S., & Ivanik, E. G. (2018). Modelirovanie konduktivnoj sushki po­ligraficheskih materialov kapilljarno-poristoj kolloidnoj struktury: Inzhenerno-fizicheskij zhur­nal, 91, 5, 1231–1241 (in Russian).
  • Koliano, Ya. Yu., & Sass, T. S. (2009). Nestatsionarna zadacha teploprovidnosti dlia dvosha­rovoi plyty shchodo sushinnia polihrafichnoi produktsii: Komp’iuterni tekhnolohii drukarstva, 21, 226–234 (in Ukrainian).
  • Koliano, Ya. Iu., Strepko, I. T., Svyryd, O. R., Babych, O. Ye., & Melnyk, K. I. (2019). Mo­deliuvannia teplovoi obrobky odno- ta kilkasharovykh materialiv u polihrafichnykh pro­tse­sakh: Komp’iuterni tekhnolohii drukarstva, 1 (41), 102–115 (in Ukrainian).
  • Koliano, Ya. Yu., Strepko, I. T., Marchuk (Svyryd), O. R., & Melnyk, K. I. (2020). Doslidzhennia protsesu nestatsionarnoho konvektyvnoho nahrivannia odnosharovykh polihrafichnykh mate­rialiv: Komp’iuterni tekhnolohii drukarstva, 1 (43), 97–115 (in Ukrainian).
  • Koliano, Ya. Yu., Senkivskyi, V. M., Marchuk (Svyryd), O. R., & Melnyk, K. I. (2020). Chyselne porivniannia nestatsionarnoho konvektyvnoho i konduktyvnoho nahrivannia odno­sharovykh polihrafichnykh materialiv: Polihrafiia ta vydavnycha sprava, 2 (80), 81–99 (in Uk­rainian).
  • Pikh, I. V., Durniak, B. V., Senkivskyi, V. M., & Holubnyk, T. S. (2017). Informatsiini tekh­nolohii formuvannia yakosti knyzhkovykh vydan. Lviv : UAD (in Ukrainian).
  • Sholota, K. V. (1998). Intensyfikatsiia protsesu sushinnia kompozytnykh derevynnykh mate­rialiv : avtoref. dys. kand. tekhn. nauk. Lviv : Ukrainskyi derzhavnyi lisotekhnichnyi univer­sytet (in Ukrainian).
  • Shot, R. I., & Strepko, I. T. (1998). Teplovi protsesy v polihrafii. Lviv : UAD «Feniks» (in Uk­rainian).
  • Havenko, S. F., & Martyniuk, M. S. (2008). Tekhnolohiia laminuvannia drukarskykh vid­byt­kiv. Lviv : UAD (in Ukrainian).
  • Melnyk, K. I. (2021). Matematychne modeliuvannia teplovoi obrobky dvo- i bilshesharovykh polihrafichnykh materialiv. Lviv : UAD (in Ukrainian).
  • Havenko, S. F., & Yordan, H. M. (2012). Tekhnolohiia mikrokhvylovoho vysushuvannia knyzh­kovykh blokiv. Lviv : UAD (in Ukrainian).
  • Handbook of Industrial Drying. Fourth Edition. Boca Raton (USA), 2015 (in English).