Numerical comparison of non-stationary convective and conductive heating of single-layer printing materials

Author(s) Collection number Pages Download abstract Download full text
Koliano Ya. Yu., Senkivskyi V. M., Марчук О. Р., Мельник К. І. № 2 (80) 81-99 Image Image

The main obstacle to intensive heat treatment (heating drying) of materials is the emergence of strainings that leads to product degradation, or even to its destruction. A significant difference in the values of the temperature and moisture fields is the causes of high temperature stresses and deformations during heating. An important technological factor in the heating of various materials is the preservation of the form in forthcoming technological operations. That is why, the choice of mode parameters of the heating process (drying) - temperature and speed of the coolant – is important in determining the technological mode in specific production conditions. The convective method along with the conductive (contact) method is widely used in printing industry. The number of theoretical and practical studies on the convective method is significant and they continue, especially on high-speed (jet) convection and combined methods (conductive-convective, ray-convective). The conductive method is less studied, especially for printing materials. The radiation (infrared) method is even less studied and still less used due to its high cost. The study of the advantages of different methods of heat treatment will facilitate the correct choice of dryers design and mode of operation, taking into account the characteristics of the dried material. This will improve the quality, durability and preserve the biological value of the product.

In this paper a new approach is suggested to the study of heat treatment processes (heating, drying) of certain printing materials, based on the theory of non-stationary thermal conductivity by O. V. Lykov. The approbation is performed for conductive (contact) and convective method of heating single-layer plates. The graphs of temperature dependence on time for materials made of cardboard, cotton, polyurethane, polypropylene, polyethylene used in printing, packaging, light and construction industries, etc. are presented and compared. These single-layer materials are studied to create the necessary multilayer materials (composites) with predetermined properties. The results of numerical analysis can be recommended to enterprises in both printing and other industries, which use heat treatment (heating, drying). As a result, it is possible to optimize technological processes and ensure the required quality of products.

Keywords: thermal processing; printing industry; conductive, convective heating and drying; non-stationary thermal conductivity and moisture conductivity; mathematical model; thermophysical parameters; temperature gradients.

doi: 10.32403/0554-4866-2020-2-80-81-99


  • 1. Isachenko, V. P., Osipova, V. A., & Sukomel, A. S. (1981). Teploperedacha. Moskva : Jener­goizdat (in Russian).
  • 2. Sass, T. S. (2015). Informatsiini tekhnolohii udoskonalennia protsesiv sushinnia polihra­fich­nykh materialiv : dys. ... kand.. tekhn.. nauk : 05.13.06. Lviv (in Ukrainian).
  • 3. Ol’shanskij, A. I. (2014). Reguljarnyj teplovoj rezhim nagrevanija vlazhnyh ploskih ka­pil­ljar­no-poristyh materialov v processe ih sushki: Inzhenerno-fizicheskij zhurnal, 87, 6, 1308–1318 (in Russian).
  • 4. Ol’shanskij, A. I., Zhernosek, S. V., & Ol’shanskij, V. I. (2014). Grafoanaliticheskij metod rascheta konvektivno-termoradiacionnoj sushki tehnicheskih tkanej: Vestnik Vitebskogo go­su­darstvennogo tehnologicheskogo universiteta, 26, 74–84 (in Russian).
  • 5. Il’inskij, V. M. (1974). Stroitel’naja teplofizika. Moskva : Vysshaja shkola (in Russian).
  • 6. Novichenok, N. L., & Shul’man, Z. P. (1971). Teplofizicheskie svojstva polimerov. Minsk : «Nauka i tehnika» (in Russian).
  • 7. Svojstva polimerov: teploprovodnost’ i plotnost’ plastikov i plastmass. Retrieved from http://thermalinfo.ru (in Russian).
  • 8. Babichev, A. P., Babushkina, N. A., & Bratkovskij, A. M. i dr. (1991). Fizicheskie velichiny. Spra­vochnik / pod red. I. S. Grigor’eva, E. Z. Mejlihova. Moskva : Jenergoatomizdat (in Russian).
  • 9. Kolyano, Ya. Yu., Svyryd, O. R., & Babych, O. Ye. (2018). Nestatsionarna zadacha teplo­pro­vidnosti dlia dvosharovoi plastyny shchodo konvektyvnoho sushinnia polihrafichnoi pro­duktsii. Zvitna nauk.-tekhn. konferentsiia prof.-vykl. skladu, naukovykh pratsivnykiv i as­pi­ran­tiv UAD za 2017 rik : tezy dop. (liut. 2018 r.). Lviv, 123 (in Ukrainian).
  • 10. Kolyano, Ja. Ju., Sass, T. S., & Ivanik, E. G. (2018). Modelirovanie konduktivnoj sushki poligraficheskih materialov kapilljarno-poristoj kolloidnoj struktury: Inzhenerno-fizicheskij zhurnal. Minsk, 91, 5, 1231–1241 (in Russian).
  • 11. Vorob’ev, D. V., Dubasov, A. I., & Lebedev, Ju. M. (1989). Tehnologija broshjurovochno-pe­repletnyh processov. Moskva : Kniga (in Russian).
  • 12. Lykov, A. V., & Mihajlov, Ju. A. (1963). Teorija teplo- i massoperenosa. Moskva : Gosje­ner­goizdat (in Russian).
  • 13. Lykov, A. V. (1967). Teorija teploprovodnosti. Moskva : Vysshaja shkola (in Russian).
  • 14. Kolyano, Ya. Yu., Strepko, I. T., Svyryd, O. R., Babych, O. Ye., & Melnyk, K. I. (2019). Modeliuvannia teplovoi obrobky odno- ta kilkasharovykh materialiv u polihrafichnykh pro­tse­sakh: Komp’iuterni tekhnolohii drukarstva, 1 (41), 102–115 (in Ukrainian).
  • 15. Kolyano, Ya. Yu., Strepko, I. T., Marchuk (Svyryd), O. R., & Melnyk, K. I. (2020). Doslidzhennia protsesu nestatsionarnoho konvektyvnoho nahrivannia odnosharovykh polihrafichnykh ma­te­rialiv: Komp’iuterni tekhnolohii drukarstva, 1 (43), 97–115 (in Ukrainian).
  • 16. Lykov, A. V. (1968). Teorija sushki. Moskva : Jenergija (in Russian).
  • 17. Shot, R. I., & Strepko, I. T. (1998). Teplovi protsesy v polihrafii. Lviv : UAD «Feniks» (in Ukrainian).
  • 18. Fedosov, S. V., & Ibragimov, A. M. (2006). Nestacionarnyj teplo- i massoperenos v mno­go­sloj­nyh ograzhdajushhih konstrukcijah: Stroitel’nye materialy, 4, 86–87 (in Russian).
  • 19. Tkachenko, O. O. (2005). Vysokotemperaturni protsesy ta ustanovky. Kyiv : A.S.K. (in Uk­rainian).
  • 20. Svyryd, O. R. (2020). Matematychne modeliuvannia konvektyvnoi teplovoi obrobky odno- ta dvosharovykh polihrafichnykh materialiv. Lviv : UAD (in Ukrainian).
  • 21. Sholota, K. V. (1998). Intesyfikatsiia protsesu sushinnia kompozytnykh derevynnykh ma­te­rialiv : avtoref. dys. kand. tekhn. nauk. Lviv : Ukrainskyi derzhavnyi lisotekhnichnyi uni­ver­sy­tet (in Ukrainian).
  • 22. Ivanov, S. N. (2006). Tehnologija bumagi. Moskva : «Moskovskaja tipografija № 2» (in Rus­sian).
  • 23. Kolyano, Ya. Yu., & Sass, T. S. (2009). Nestatsionarna zadacha teploprovidnosti dlia dvo­sha­ro­voi plyty shchodo sushinnia polihrafichnoi produktsii: Komp’iuterni tekhnolohii drukarstva, 21, 226–234 (in Ukrainian).
  • 24. Havenko, S. F., & Yordan, H. M. (2012). Tekhnolohiia mikrokhvylovoho vysushuvannia knyzhkovykh blokiv. Lviv : UAD, 144 (in Ukrainian).
  • 25. Handbook of Industrial Drying. Fourth Edition. Boca Raton (USA), 2015. 1333 p. (in English).
  • 26. Pikh, I. V., Durniak, B. V., Senkivskyi, V. M., & Holubnyk, T. S. (2017). Informatsiini tekh­no­lohii formuvannia yakosti knyzhkovykh vydan. Lviv : UAD (in Ukrainian).
  • 27. Babych, O. Ye. (2020). Nestatsionarni zadachi teploprovidnosti dlia odno- ta dvosharovoi plastyny shchodo konvektyvnoi ta konduktyvnoi teplovoi obrobky polihrafichnykh materialiv. Lviv : UAD (in Ukrainian).